Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2316910121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483985

RESUMO

Weyl semimetals resulting from either inversion (P) or time-reversal (T) symmetry breaking have been revealed to show the record-breaking large optical response due to intense Berry curvature of Weyl-node pairs. Different classes of Weyl semimetals with both P and T symmetry breaking potentially exhibit optical magnetoelectric (ME) responses, which are essentially distinct from the previously observed optical responses in conventional Weyl semimetals, leading to the versatile functions such as directional dependence for light propagation and gyrotropic effects. However, such optical ME phenomena of (semi)metallic systems have remained elusive so far. Here, we show the large nonlinear optical ME response in noncentrosymmetric magnetic Weyl semimetal PrAlGe, in which the polar structural asymmetry and ferromagnetic ordering break P and T symmetry. We observe the giant second harmonic generation (SHG) arising from the P symmetry breaking in the paramagnetic phase, being comparable to the largest SHG response reported in Weyl semimetal TaAs. In the ferromagnetically ordered phase, it is found that interference between this nonmagnetic SHG and the magnetically induced SHG emerging due to both P and T symmetry breaking results in the magnetic field switching of SHG intensity. Furthermore, such an interference effect critically depends on the light-propagating direction. The corresponding magnetically induced nonlinear susceptibility is significantly larger than the prototypical ME material, manifesting the existence of the strong nonlinear dynamical ME coupling. The present findings establish the unique optical functionality of P- and T-symmetry broken ME topological semimetals.

2.
J Am Chem Soc ; 146(1): 773-781, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148506

RESUMO

We report the observation of superconductivity in (Pt0.2Ir0.8)3Zr5 with a chiral space group (P6122) at low temperatures. The bulk nature of the superconductivity at a transition temperature of 2.2 K was confirmed using specific heat measurements. We revealed that (Pt0.2Ir0.8)3Zr5 obeys the weak-coupling Bardeen-Cooper-Schrieffer model, and the dominant mechanism in the upper critical field is the orbital pair-breaking limit rather than the Pauli-Clogston limit. This indicates that the antisymmetric spin-orbit coupling caused by the chiral crystal structure does not significantly affect the superconductivity of (Pt0.2Ir0.8)3Zr5.

3.
ACS Omega ; 8(45): 42900-42906, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024771

RESUMO

The thermoelectric performance of RbZn4-xCuxAs3 crystallized in the KCu4S3-type structure was investigated. Samples were synthesized via solid-state reactions, followed by hot pressing. Hole carriers were doped by substituting Zn with Cu until x = 0.02, resulting in an increase of the power factor from 0.049 to 0.52 mW/mK2 at T = 797 K. The lattice thermal conductivity was substantially low, with a value of 1.61 W/mK at T = 312 K, independent of doping. This can be attributed to the large vibration of the Rb atoms, as demonstrated by the neutron diffraction analysis. The maximum dimensionless figure of merit, ZT, was 0.53 at T = 797 K, representing the highest value for the 143-Zintl compounds. The result indicated that the 143-Zintl compounds could be a new class of high-performance thermoelectric materials.

4.
ACS Omega ; 8(12): 11288-11292, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008157

RESUMO

Depending on thermal and pressure conditions, AgInS2 exhibits various crystal structures. In this study, we synthesized a high-purity polycrystalline sample of trigonal AgInS2, which is a layered compound, using a high-pressure synthesis technique. The crystal structure was investigated by synchrotron powder X-ray diffraction and the Rietveld refinement. On the basis of band calculation, X-ray photoelectron spectroscopy, and electrical resistance measurements, we found that the obtained trigonal AgInS2 is a semiconductor. Temperature dependencies of electrical resistance of AgInS2 were measured by a diamond anvil cell up to 31.2 GPa. Although semiconducting behavior was suppressed with pressure, metallic behavior was not observed within the pressure range investigated in this study.

5.
Sci Rep ; 13(1): 1008, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653405

RESUMO

Recently, c-axis negative thermal expansion (NTE) was observed in a CoZr2 superconductor and related transition-metal zirconides. Here, we investigated the structural, electronic, and superconducting properties of Co1-xNixZr2 to achieve systematic control of c-axis NTE and switching from NTE to positive thermal expansion (PTE) by Ni substitution. At x ≤ 0.3, c-axis NTE was observed, and the thermal expansion constant αc approached zero with increasing x. At x = 0.4-0.6, c-axis thermal expansion close to zero thermal expansion (ZTE) was observed, and PTE appeared for x ≥ 0.7. On the superconducting properties, we observed bulk superconductivity for x ≤ 0.6, and bulk nature of superconductivity is suppressed by Ni heavy doping (x ≥ 0.7). For x ≤ 0.6, the evolution of the electronic density of states well explains the change in the superconducting transition temperature (Tc), which suggests conventional phonon-mediated superconductivity in the system. By analyzing the c/a ratio, we observed a possible collapsed transition in the tetragonal lattice at around x = 0.6-0.8. The lattice collapse would be the cause of the suppression of superconductivity in Ni-rich Co1-xNixZr2 and the switching from NTE to PTE.

6.
Sci Rep ; 11(1): 22885, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819583

RESUMO

We investigated the chemical pressure effects on structural and electronic properties of SnTe-based material using partial substitution of Sn by Ag0.5Bi0.5, which results in lattice shrinkage. For Sn1-2x(AgBi)xTe, single-phase polycrystalline samples were obtained with a wide range of x. On the basis of band calculations, we confirmed that the Sn1-2x(AgBi)xTe system is basically possessing band inversion and topologically preserved electronic states. To explore new superconducting phases related to the topological electronic states, we investigated the In-doping effects on structural and superconducting properties for x = 0.33 (AgSnBiTe3). For (AgSnBi)(1-y)/3InyTe, single-phase polycrystalline samples were obtained for y = 0-0.5 by high-pressure synthesis. Superconductivity was observed for y = 0.2-0.5. For y = 0.4, the transition temperature estimated from zero-resistivity state was 2.4 K, and the specific heat investigation confirmed the emergence of bulk superconductivity. Because the presence of band inversion was theoretically predicted, and the parameters obtained from specific heat analyses were comparable to In-doped SnTe, we expect that the (AgSnBi)(1-y)/3InyTe and other (Ag, In, Sn, Bi)Te phases are candidate systems for studying topological superconductivity.

7.
Sci Rep ; 11(1): 230, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469088

RESUMO

Investigation of isotope effects on superconducting transition temperature (Tc) is one of the useful methods to examine whether electron-phonon interaction is essential for pairing mechanisms. The layered BiCh2-based (Ch: S, Se) superconductor family is a candidate for unconventional superconductors, because unconventional isotope effects have previously been observed in La(O,F)BiSSe and Bi4O4S3. In this study, we investigated the isotope effects of 32S and 34S in the high-pressure phase of (Sr,La)FBiS2, which has a monoclinic crystal structure and a higher Tc of ~ 10 K under high pressures, and observed conventional-type isotope shifts in Tc. The conventional-type isotope effects in the monoclinic phase of (Sr,La)FBiS2 are different from the unconventional isotope effects observed in La(O,F)BiSSe and Bi4O4S3, which have a tetragonal structure. The obtained results suggest that the pairing mechanisms of BiCh2-based superconductors could be switched by a structural-symmetry change in the superconducting layers induced by pressure effects.

8.
Phys Rev Lett ; 125(7): 077003, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857545

RESUMO

Effective models are constructed for a newly discovered superconductor (Nd,Sr)NiO_{2}, which has been considered as a possible nickelate analog of the cuprates. Estimation of the effective interaction, which turns out to require a multiorbital model that takes account of all the orbitals involved on the Fermi surface, shows that the effective interactions are significantly larger than in the cuprates. A fluctuation exchange study suggests occurrence of d_{x^{2}-y^{2}}-wave superconductivity, where the transition temperature should be lowered from the cuprates due to the larger interaction.

9.
Inorg Chem ; 59(9): 5828-5834, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275396

RESUMO

The compound Ba1-xKxZn2As2 has a low-temperature phase (α-phase) crystallized in the α-BaCu2S2-type structure and a high-temperature phase (ß-phase) crystallized in the ThCr2Si2-type structure. We successfully obtained the ß-phase at room temperature as a metastable state by quenching from above the structural phase transition. This allowed us to determine the thermoelectric properties of the ß-phase from room to high temperature in the range of 0.00 ≤ x ≤ 0.10. The lattice thermal conductivity is quite low, with a value less than 1 W/mK at 773 K, independent of x. The effective suppression may be due to lattice instability in the underdoped region and to randomness in the overdoped region. The maximum dimensionless figure-of-merit ZT was 0.30 at 773 K for x = 0.03 with the power factor of 0.61 mW/mK2, which is relatively high for a ThCr2Si2-type structure. The results demonstrate the effectiveness of quenching for obtaining a low lattice thermal conductivity, thus providing a new method for attaining high thermoelectric performance.

10.
Inorg Chem ; 58(2): 1425-1432, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30620579

RESUMO

We report the preparations, thermoelectric and magnetic properties, and electronic structures of Cu-Ti-S systems, namely, cubic thiospinel c-Cu1- xTi2S4 ( x ≤ 0.375), a derivative cubic and Ti-rich phase c-Cu1- xTi2.25S4 ( x = 0.5, 0.625), and a rhombohedral phase r-CuTi2S4. All samples have the target compositions except for r-CuTi2S4, whose actual composition is Cu1.14Ti1.80S4. All of the phases have n-type metallic character and exhibit Pauli paramagnetism, as proven by experiments and first-principles calculations. The Cu and Ti deficiencies in c-Cu1- xTi2S4 and r-CuTi2S4, respectively, decrease the electron-carrier concentration, whereas the "excess" of Ti ions in c-Cu1- xTi2.25S4 largely increases it. For r-CuTi2S4, the reduced carrier concentration increases the electrical resistivity and Seebeck coefficient, leading to the highest thermoelectric power factor of 0.5 mW K-2 m-1 at 670 K. For all of the Cu-Ti-S phases, the thermal conductivity at 670 K is 3.5-5 W K-1 m-1, where the lattice part of the conductivity is as low as 1 W K-1 m-1 at 670 K. As a result, r-CuTi2S4 shows the highest dimensionless thermoelectric figure of merit ZT of 0.2. The present systematic study on the Cu-Ti-S systems provides insights into the structural design of thermoelectric materials based on Cu-M-S (M = transition-metal elements).

11.
Adv Mater ; 30(13): e1706230, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29388262

RESUMO

Thermoelectric devices convert heat flow to charge flow, providing electricity. Materials for highly efficient devices must satisfy conflicting requirements of high electrical conductivity and low thermal conductivity. Thermal conductivity in caged compounds is known to be suppressed by a large vibration of guest atoms, so-called rattling, which effectively scatters phonons. Here, the crystal structure and phonon dynamics of tetrahedrites (Cu,Zn)12 (Sb,As)4 S13 are studied. The results reveal that the Cu atoms in a planar coordination are rattling. In contrast to caged compounds, chemical pressure enlarges the amplitude of the rattling vibration in the tetrahedrites so that the rattling atom is squeezed out of the planar coordination. Furthermore, the rattling vibration shakes neighbors through lone pairs of the metalloids, Sb and As, which is responsible for the low thermal conductivity of tetrahedrites. These findings provide a new strategy for the development of highly efficient thermoelectric materials with planar coordination.

12.
Sci Rep ; 5: 11399, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073071

RESUMO

Motivated by recent experimental investigations of the isovalent doping iron-based superconductors LaFe(AsxP1-x)O1-yFy and NdFe(AsxP1-x)O1-yFy, we theoretically study the correlation between the local lattice structure, the Fermi surface, the spin fluctuation-mediated superconductivity, and the composition ratio. In the phosphides, the dXZ and dYZ orbitals barely hybridize around the Γ point to give rise to two intersecting ellipse shape Fermi surfaces. As the arsenic content increases and the Fe-As-Fe bond angle is reduced, the hybridization increases, so that the two bands are mixed to result in concentric inner and outer Fermi surfaces, and the orbital character gradually changes to dxz and dyz, where x-y axes are rotated by 45 degrees from X-Y. This makes the orbital matching between the electron and hole Fermi surfaces better and enhances the spin fluctuation within the dxz/yz orbitals. On the other hand, the hybridization splits the two bands, resulting in a more dispersive inner band. Hence, there is a trade-off between the density of states and the orbital matching, thereby locally maximizing the dxz/yz spin fluctuation and superconductivity in the intermediate regime of As/P ratio. The consistency with the experiment strongly indicate the importance of the spin fluctuation played in this series of superconductors.

13.
Phys Rev Lett ; 113(2): 027002, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062222

RESUMO

We present a theoretical understanding of the superconducting phase diagram of the electron-doped iron pnictides. We show that, besides the Fermi surface nesting, a peculiar motion of electrons, where the next nearest neighbor (diagonal) hoppings between iron sites dominate over the nearest neighbor ones, plays an important role in the enhancement of the spin fluctuation and thus superconductivity. In the highest T(c) materials, the crossover between the Fermi surface nesting and this "prioritized diagonal motion" regime occurs smoothly with doping, while in relatively low T(c) materials, the two regimes are separated and therefore results in a double dome T(c) phase diagram.

14.
Phys Rev Lett ; 105(5): 057003, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20867949

RESUMO

In order to explore the reason why the single-layered cuprates, La(2-x)(Sr/Ba)(x)CuO4 (T(c)≃40 K) and HgBa2CuO(4+δ) (T(c)≃90 K) have such a significant difference in T(c), we study a two-orbital model that incorporates the d(z2) orbital on top of the d(x2-y2) orbital. It is found, with the fluctuation exchange approximation, that the d(z2) orbital contribution to the Fermi surface, which is stronger in the La system, works against d-wave superconductivity, thereby dominating over the effect of the Fermi surface shape. The result resolves the long-standing contradiction between the theoretical results on Hubbard-type models and the experimental material dependence of T(c) in the cuprates.

15.
J Phys Condens Matter ; 21(6): 064223, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21715925

RESUMO

Based on first-principles calculations, we study the origin of the large thermopower in Ni-doped LaRhO(3) and Mg-doped CuRhO(2). We calculate the band structure and construct the maximally localized Wannier functions from which a tight binding Hamiltonian is obtained. The Seebeck coefficient is calculated within the Boltzmann's equation approach using this effective Hamiltonian. For LaRhO(3), we find that the Seebeck coefficient remains nearly constant within a large hole concentration range, which is consistent with the experimental observation. For CuRhO(2), the overall temperature dependence of the calculated Seebeck coefficient is in excellent agreement with the experiment. The origin of the large thermopower is discussed.

16.
Phys Rev Lett ; 101(8): 087004, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18764652

RESUMO

For a newly discovered iron-based high T_{c} superconductor LaFeAsO1-xFx, we have constructed a minimal model, where inclusion of all five Fe d bands is found to be necessary. The random-phase approximation is applied to the model to investigate the origin of superconductivity. We conclude that the multiple spin-fluctuation modes arising from the nesting across the disconnected Fermi surfaces realize an extended s-wave pairing, while d-wave pairing can also be another candidate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...